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Research over the last two decades has widely demonstrated that impulsivity, in its various forms, is antecedent to the
development of drug addiction and an important behavioural trait underlying the inability of addicts to refrain from
continued drug use. Impulsivity describes a variety of rapidly and prematurely expressed behaviours that span several domains
from impaired response inhibition to an intolerance of delayed rewards, and is a core symptom of attention deficit
hyperactivity disorder (ADHD) and other brain disorders. Various theories have been advanced to explain how impulsivity
interacts with addiction both causally and as a consequence of chronic drug abuse; these acknowledge the strong overlaps in
neural circuitry and mechanisms between impulsivity and addiction and the seemingly paradoxical treatment of ADHD with
stimulant drugs with high abuse potential. Recent years have witnessed unprecedented progress in the elucidation of
pharmacological mechanisms underpinning impulsivity. Collectively, this work has significantly improved the prospect for new
therapies in ADHD as well as our understanding of the neural mechanisms underlying the shift from recreational drug use to
addiction. In this review, we consider the extent to which pharmacological interventions that target impulsive behaviour are
also effective in animal models of addiction. We highlight several promising examples of convergence based on empirical
findings in rodent-based studies.
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Abbreviations

5-CSRTT, five choice serial reaction time task; ADHD, attention deficit hyperactivity disorder; DD, delayed discounting;
DRL, differential reinforcement of lower rates; FR, fixed ratio; HI, highly impulsive; ILC, infralimbic cortex; NAc,
nucleus accumbens; NARI, noradrenaline re-uptake inhibitor; OFC, orbitofrontal cortex; PFC, prefrontal cortex; PR,
progressive ratio; SSRI, selective 5-HT re-uptake inhibitor; SSRTT, stop-signal reaction time task; STN, subthalamic
nucleus; vHC, ventral hippocampus; VTA, ventral tegmental area
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Introduction

Drug addiction is a chronic, relapsing brain disorder for
which surprisingly few effective therapies have been devel-
oped (O’Brien, 2008; Jupp and Lawrence, 2010; van den
Brink, 2012; Pierce et al., 2012). Although the precise brain
mechanisms of addiction are unknown, this disorder is
widely believed to engage individual biological risk factors
that interact individually and collectively with drug-, stress-
and other externally influenced brain plasticity mechanisms
(Nestler, 2005; Uhl, 2006; Koob, 2008; Kalivas and Volkow,
2011). Consistent with this interpretation, personality traits
such as novelty/sensation-seeking and impulsivity are widely
recognized to predispose to addiction and modify disease
progression (Chakroun etal.,, 2004; Nigg etal, 2006;
Verdejo-Garcia et al., 2008; Ersche et al., 2010). Such traits
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share strong overlaps with structural and functional markers
of addiction (Jupp and Dalley, 2014) and may, as a result,
inform the neurobiological and pharmacological mecha-
nisms of this disorder, thereby raising the possibility that
modulating impulsivity may provide an approach through
which risk for addiction and/or the addiction process may be
remediated. Notably, in this regard, stimulant drugs such as
d-amphetamine, which calm behaviour and reduce hyperac-
tivity and impulsivity in attention deficit hyperactivity dis-
order (ADHD; Solanto, 1984; Fone and Nutt, 2005) are also
prominent drugs of abuse. As a consequence, it has become
an important open question whether treating ADHD with
stimulant drugs accelerates, or conversely, offers protection
against, the development of addiction (e.g. Barkley et al.,
2003). This paper reviews the evidence for convergent
pharmacological mechanisms in impulsivity and addiction,
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and additionally considers whether stimulant- and non-
stimulant-based medications in ADHD may modify an indi-
vidual’s risk for addiction.

Defining impulsivity

Impulsivity describes an individual’s tendency for premature,
excessively risky, poorly conceived and inappropriate actions
without due regard for future consequences (Daruma and
Barnes, 1993). A range of behavioural processes are generally
considered to contribute to this trait including urgency,
risk-taking, sensation-seeking, behavioural disinhibition,
impaired planning, lack of premeditation and insensitivity to
punishment (Barratt, 1985; Evenden, 1999a; Monterosso and
Ainslie, 1999; Moeller et al., 2001; Whiteside and Lynam,
2003; Robbins etal.,, 2012; Fineberg etal., 2014). While
impulsiveness is an important aspect of normal human
behaviour, facilitating extraversion, sociability and appropri-
ate risk-taking, the maladaptive expression of this trait has
been associated with a number of neuropsychiatric mor-
bidities including personality (Perry and Korner, 2011) and
mood disorders (Lombardo et al., 2012), suicide (Dougherty
et al., 2004), ADHD (Avila et al., 2004), problem gambling
(Verdejo-Garcia et al., 2008) and drug addiction (Ersche et al.,
2010).

Impulsivity is a multifactorial trait often segregated
according to motor disinhibition (‘impulsive action’) and
impulsive decision making (‘impulsive choice’) (Winstanley
et al., 2006). In humans, it is generally assessed by self-report
scales; for example, the Barratt Impulsivity Scale (BIS-11)
(Barratt, 1985), the Urgency, Premeditation, Perseverance,
Sensation-Seeking  (UPSS) Impulsive Behaviour Scale
(Whiteside and Lynam, 2003) and Dickman’s Impulsivity
Inventory (DII) (Dickman, 1990). Psychometric laboratory-
based tasks can also be used to assess impulsivity; these over-
come many of the limitations associated with self-report (e.g.
see Wilson and Dunn, 2004) by providing more objective
behavioural measures (Kertzman et al., 2006; Chamberlain
and Sahakian, 2007). In experimental animals, impulsive
choice is frequently measured by operant-based delay-
discounting tasks (Reynolds etal., 2002; Cardinal, 2006).
While several variants of this task are used, the general pro-
cedure involves a choice between a small immediate reward
and a larger, but delayed reward. Impulsive choice is indexed
by steeper reward discounting such that with increasing delay
the perceived ‘value’ of reward diminishes and preference
switches to small, immediate rewards. Action impulsivity can
be assessed using a variety of operant paradigms; for example
go/no-go visual and spatial discrimination tasks (Harrison
et al., 1999), which require inhibition of incorrect responses;
the stop-signal reaction time task (SSRTT) where already ini-
tiated actions must be rapidly cancelled following presenta-
tion of an auditory or visual ‘stop signal’ stimulus (Eagle and
Robbins, 2003). Impulsivity is assessed in these tasks by the
number of inappropriate responses made. These include pre-
mature responses to a food-predictive cue on the five choice
serial reaction time task (5-CSRTT) (Robbins, 2002), analo-
gous to the differential responding for differential reinforce-
ment of lower rate (DRL) task where responses made before a
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time interval has elapsed are punished (Evenden and Ryan,
1996; Evenden, 1999a).

Impulsivity and addiction

Impulsivity is widely regarded to contribute to the develop-
ment of addiction, predicting initial drug use (Zernicke et al.,
2010), risk for addiction (Ersche et al., 2010), rates of relapse
(Muller et al., 2008) and treatment retention (Moeller et al.,
2001). However, drugs of abuse can in turn affect levels of
impulsivity (Jentsch and Taylor, 1999; Garavan et al., 2008;
de Wit, 2009) making it unclear whether co-expressed impul-
sivity in addicts (e.g. Petry, 2001; Moreno-Lopez et al., 2012)
is a cause or consequence of chronic drug use (Rogers and
Robbins, 2001). In contrast, animal models of impulsivity
help disambiguate causal relationships between impulsivity
and addiction by enabling assessment prior to, and following,
chronic drug exposure (Winstanley et al., 2010a; Jupp et al.,
2013a). Collectively, these studies demonstrate that impulsiv-
ity affects different measures of addiction-related behaviour
depending on drug class, baseline levels of impulsivity and
specific impulsivity subtypes; they further demonstrate that
drug use can, in turn, affect levels of impulsivity. For
example, action impulsivity in rats precedes enhanced self-
administration of a range of drugs, including stimulants
(Dalley et al., 2007; Belin et al., 2008; Marusich and Bardo,
2009), alcohol (Radwanska and Kaczmarek, 2012) and nico-
tine (Diergaarde et al., 2008), and predicts increased rates of
relapse to cocaine-seeking (Economidou et al., 2009). Simi-
larly, choice impulsivity predicts increased alcohol (Poulos
etal.,, 1995; Oberlin and Grahame, 2009) and nicotine
(Diergaarde et al., 2008; Kayir et al., 2014) consumption in
rats, as well as resistance to extinction and enhanced relapse
propensity to both nicotine (Diergaarde et al., 2008) and
cocaine (Broos etal.,, 2012a). However, the relationship
between choice impulsivity and drug reinforcement is not
always clear (Broos et al., 2012a; Schippers et al., 2012), and
this may reflect direct modulatory effects of cocaine and
heroin on this particular measure of impulsivity (Mendez
et al., 2010; Schippers et al., 2012).

Intriguingly, the effect of certain drugs on impulsivity
often depends on baseline levels of impulsivity. For example,
cocaine (Paine et al., 2003; Roesch et al., 2007; Winstanley
et al., 2009; Mendez et al., 2010; Caprioli et al., 2013) and
nicotine (Kayir et al., 2014) are reported to increase impulsiv-
ity in non-impulsive rats, but have the opposite effect in
impulsive animals (Dalley et al., 2007; Caprioli et al., 2013;
Kayir et al., 2014; Kolokotroni et al., 2014). It follows there-
fore that enhanced drug intake in impulsive animals may
represent a form of ‘self-medication’ (Khantzian, 1985) analo-
gous to the treatment of ADHD with stimulant drugs. Fur-
thermore, the close interrelationship between impulsivity
and addiction implies that they may share similar psychobio-
logical mechanisms (e.g. an intolerance of delayed rewards)
and that interventions that reduce impulsivity would have
clinical benefits in addiction. In this review, we consider the
strength of evidence implicating shared pharmacological
mechanisms in impulsivity and rodent models of addiction-
like behaviours and thus the feasibility of treating impulsivity
to remediate addiction.
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Animal models of addiction-like
behaviour

While many rodent paradigms are available to model
addiction-related processes, including reinforcement mecha-
nisms (Sanchis-Segura and Spanagel, 2006), we have limited
our discussion to studies involving drug self-administration
and reinstatement procedures in rodents. These behavioural
paradigms typically involve operant responding for i.v., or in
the case of alcohol, oral drug reward, often in the presence of
contingent and non-contingent cues and/or contexts, and
typically either fixed ratio (FR — where a fixed number of
responses result in reward) or progressive ratio (PR — where an
incremental number of responses result in reward) reinforce-
ment schedules. Relapse-like behaviour can be assessed in a
number of ways, either following extinction of the learned
association between contingent cues and contexts in the
absence of drug availability, or after a period of forced absti-
nence. Relapse is triggered by exposing subjects to cues or
contexts previously associated with drug availability (cue/
context induced), a physical or chemical stressor (e.g. foot-
shock, yohimbine) or following the administration of a
priming dose of drug (i.e. drug-primed). It should be noted
that these addiction-related behaviours only model aspects of
the addiction construct and fail to recapitulate for example,
the patterns of compulsive drug-seeking and intake associ-
ated with addiction. It has been suggested that the generally
poor translation of preclinical and laboratory findings to
positive clinical outcomes may be related to the limitations of
these models to more fully encompass real world human
addiction (Haney and Spealman, 2008). While such animal
behavioural models have been developed (e.g.
Deroche-Gamonet et al., 2004; Vanderschuren and Everitt,
2004; Belin efal.,, 2008) only a few studies to date have
assessed the ability of specific pharmacological agents to
disrupt these behaviours (Pelloux et al., 2012). Importantly,
in terms of the clinical applicability of the current review, the
subtypes of impulsivity discussed have been demonstrated to
predict vulnerability to addiction as assessed by these con-
temporary rodent models (e.g. Belin et al., 2008).

Pharmacological mechanisms of
impulsivity: convergent mechanisms
with addiction

Dopaminergic agents
Dysfunction of the midbrain dopaminergic systems has been
implicated in several forms of impulsive behaviour (Pattij and
Vanderschuren, 2008; Dalley and Roiser, 2012) and widely in
the development and persistence of addiction (Volkow et al.,
2004; Thomas et al., 2008; Sulzer, 2011; George et al., 2012)
not least as all drugs of abuse exert effects on the mesocorti-
colimbic dopamine neurons (Di Chiara and Imperato, 1988).
However, the modulation of impulsivity and addiction-
related behaviours by dopamine is complex and in the case of
impulsivity often variable depending on the precise measure
of impulsivity (Tables 1 and 2).

In keeping with the efficacy of stimulant medications in
ADHD, acute administration of cocaine, amphetamine and
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methylphenidate generally decreases impulsive choice in
rats, increasing tolerance for delayed rewards in various dis-
counting paradigms (Richards et al., 1999; Wade et al., 2000;
Isles et al., 2003; Winstanley et al., 2003a; van Gaalen et al.,
2006a; Adriani et al., 2007; Barbelivien et al., 2008; Floresco
et al., 2008; Perry et al., 2008; Krebs and Anderson, 2012).
However, there have been notable exceptions (Evenden and
Ryan, 1996; Cardinal et al., 2000; Helms et al., 2006; Stanis
et al., 2008a; Wooters and Bardo, 2011), which may reflect
strain differences and paradigm-related effects. For example,
methylphenidate reduces delay-discounting impulsivity in
Wistar Kyoto rats, but has no effect in spontaneously hyper-
tensive rats (Wooters and Bardo, 2011). Moreover, the pres-
ence of cues to signal delays can modulate the effects of
stimulants in this task. Thus, amphetamine increases toler-
ance to cued delays (decreases impulsivity), but decreases
tolerance to non-cued delays (Cardinal et al., 2000). Stimu-
lant medications also acutely increase impulsivity on tasks
that assess action impulsivity; for example, the 5-CSRTT
(Cole and Robbins, 1987; van Gaalen et al., 2006b; Blondeau
and Dellu-Hagedorn, 2007), but generally decrease impulsiv-
ity on the SSRTT (Feola et al., 2000; Eagle and Robbins, 2003;
Eagle et al., 2007; 2009). These divergent effects lend support
to the recently proposed dichotomy of ‘waiting’ versus ‘stop-
ping’ forms of action impulsivity, which are differentially
assayed by these two tasks (Dalley et al., 2011).

Although stimulant drugs probably modulate impulsivity
by enhancing dopaminergic tone, their effects are not always
mirrored by drugs that act selectively through this mecha-
nism, notably, dopamine re-uptake inhibitors (Table 1). Fur-
thermore, the effect of amphetamine to reduce choice
impulsivity is reduced in rats depleted of 5-HT (Winstanley
et al., 2003a). While these findings implicate additional neu-
rotransmitters and mechanisms underlying the effects of
indirect dopamine receptor agonists on impulsivity (includ-
ing stimulants), the ability of directly acting D; and D,-like
receptor antagonists to oppose the effect of stimulants on
impulsivity (e.g. van Gaalen et al., 2006a,b) support a dopa-
minergic mechanism of action. Work over several years has
localized these effects to specific corticostriatal sites (Table 2)
with receptor subtype and region-specific effects. For example
while oppositional effects of D,-like receptor antagonism is
observed between the nucleus accumbens (NAc) core and
shell, decreasing and increasing impulsivity respectively in
the 5-CSRTT (Besson etal., 2010), a similar subregion-
dependent distinction has not been reported for D, receptors
(Pattij et al., 2007a). It is unclear whether a similar divergence
in dopaminergic modulation exists between the core and
shell of the NAc with respect to impulsive choice; however,
the effects of selective lesions of these subregions would
appear to support this assertion (Ghods-Sharifi and Floresco,
2010). Further region-specific differentiation between D;- and
D,-like receptor subtypes has been observed within the
orbitofrontal cortex (OFC), with administration of a D,/Ds,
but not a D, receptor agonist found to reduce premature
responding in highly impulsive (HI) animals (Winstanley
et al., 2010b). Similarly, administration of the D,/D; receptor
antagonist raclopride in the OFC increased impulsive choice,
while a D, receptor antagonist had no effect (Pardey et al.,
2013). The significance of opponent interactions between
NAc subregion and dopamine receptor subtype is unclear;
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Table 1

Selected examples of the effects of acute systemic administration of dopaminergic compounds on measures of impulsivity and addiction-like
behaviour in rodent models

Impulsive action

Impulsive choice

SSRTT DD Self-administration Reinstatement

Dopamine
re-uptake

Amphetamine

D; antagonist
SCH-23390

inhibitor/releaser

T (Harrison et al.,
1997; van Gaalen
et al., 2006b)

d (Harrison et al.,
1997; Koskinen
and Sirvio, 2001;
van Gaalen et al.,
2006a,b)

T (Evenden and
Ryan, 1996;
Cardinal et al.,
2000)

d (Wade et al.,
2000; van Gaalen
et al., 2006a)

! (Eagle et al.,
2009)

T* (amphetamine)
(van Gaalen
et al., 2006a),

= (Wade et al.,
2000)

= (Bari and
Robbins, 2013)

T ethanol (Pfeffer
and Samson,
1985)

T FR cocaine
(Barrett et al.,
2004; Xi et al.,
2009)

d PR for cocaine (Xi
et al., 2009)

etal., 1999)

1 PR cocaine
(Hubner and
Moreton, 1991;
Depoortere et al.,
1993)

T FR cocaine (Koob
etal., 1987)

T cocaine (De Vries
et al., 1998a)

Cocaine T (van Gaalen T cocaine (De Vries
et al., 2006b) et al., 1998a)
Methylphenidate T (Navarra et al., 1§ (Eagle et al., ! (van Gaalen T FR cocaine T drug-primed
2008b; Milstein 2007) et al., 2006a) (Hiranita et al., cocaine (Schenk
et al., 2010; Pattij 2011) and Partridge,
etal., 2012) T FR nicotine 1999; Broos
=§ (Fernando et al., (Wooters et al., et al., 2012a)
2012) 2008) = cue-induced
cocaine
(Economidou
etal., 2011)
GBR12909 T (van Gaalen = (Bari et al., 2009) | (van Gaalen L FR cocaine (Tella, T drug-primed
et al., 2006b) et al., 2006a) 1995; Schenk, cocaine (Schenk,
2002) 2002)
T FR cocaine
(Barrett et al.,
2004)
D; agonist
SKF-81297 = (Winstanley et al., = (Koffarnus et al., 1 FR ethanol ! drug-primed
2010b) 2011) (Cohen et al., cocaine (Self
1999) et al., 1996)
T PR cocaine
(Rowlett et al.,
2007)
SKF-82958 d FR cocaine (Caine

| drug-primed
cocaine (Self
et al., 1996;
Schenk and
Gittings, 2003)
d context-induced
cocaine (Broos
et al., 2012a)
| drug-primed MA
(Carati and
Schenk, 2011)
l cue-induced
nicotine (Liu
etal., 2010)
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Table 1

Continued

Impulsive action

Impulsive choice

D, agonist
Quinpirole

D, antagonist

Eticlopride

L741626

Aripiprazole

Sulpiride
Haloperidol

Raclopride

D:/D; antagonist
Flupenthixol

D3 agonist
7-OH-PIPAT

D; antagonist
Nafadotride

SSRTT

1§ (Fernando et al.,
2012)

= (van Gaalen et al.,
2006b)

1* (amphetamine,
cocaine, nicotine)
(van Gaalen
et al., 2006b)

= (van Gaalen et al.,
2009)

U* (amphetamine)
(van Gaalen
et al., 2009)

1§ (Besson et al.,
2010)

= (Bari and
Robbins, 2013)

1* (DOI) (Koskinen
and Sirvio, 2001)

= (Bari and
Robbins, 2013)

=§ (Besson et al.,
2010)

= (Bari and
Robbins, 2013)

= (Koffarnus et al.,
2011)

= (van Gaalen et al.,
2006a)

T* (amphetamine)
(van Gaalen
et al., 2006a)

= (Koffarnus et al.,
2011)

= (Evenden and
Ryan, 1996)

T (Wade et al.,
2000)

T (Cardinal et al.,
2000; Wade
et al., 2000)

Self-administration

d FR cocaine (Caine
and Koob, 1993)

1 FR ethanol
(Cohen et al.,
1998)

= PR MA (lzzo
etal.,, 2001)

T FR cocaine (Caine
and Koob, 1994)

d PR cocaine (Ward
et al., 1996)

J PR MA (Izzo
etal.,, 2001)

T FR cocaine
(Roman et al.,
2013)

d PR MA (Wee
etal., 2007)

T FR cocaine
(Weissenborn
etal., 1996)

T FR, L PR cocaine
(Richardson et al.,
1994)

L FR, T PR cocaine
(Caine and Koob,
1995)

Reinstatement

T drug-primed
cocaine (Self
et al., 1996),

T cocaine (De Vries
et al., 2002)

! drug-primed
cocaine (Schenk
and Gittings,
2003)

= drug-primed MA
(Carati and
Schenk, 2011)

! cue-induced

nicotine (Liu et al.,
2010)

1 cue-induced,
drug-primed
cocaine
(Feltenstein et al.,
2007)

| drug-primed
cocaine
(Weissenborn
et al., 1996)

d context induced
cocaine
(Crombag et al.,
2002)

= drug-primed
cocaine (Khroyan
et al., 2000)

! cue-induced
cocaine (Weiss
etal., 2001)
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Table 1

Continued

Impulsive action

Impulsive choice

SSRTT DD Self-administration Reinstatement
SB277011 = (van Gaalen et dl., L FR, PR cocaine ! drug-primed MA
2009) (Song et al., (Higley et al.,
=* (amphetamine) 2012) 2011)
(van Gaalen 1 PR MA (Higley ! drug-primed
et al., 2009) etal., 2011) ethanol
1 PR nicotine (Ross (Heidbreder
et al., 2007) et al., 2007)
= FR nicotine
(Kameda et al.,
2000)
= FR ethanol
(Heidbreder
etal., 2007)
Pramipexole = (Koffarnus et al.,
2011)
PG01037 = (Koffarnus et al.,
2011)
D4 agonist
PD168077 = (Bari and
Robbins, 2013)
D, antagonist
L745870 U* (methylphenidate) = (Bari and = (Koffarnus et al.,
(Milstein et al., Robbins, 2013) 2011)
2010)
ABT724 T (Koffarnus et al.,
2011)

*Denotes significant effect on pharmacologically increased (5-CSRTT)/decreased levels of impulsivity, agent in parentheses.

§Denotes effect in selected high-impulsive rats.

T, increased; |, decreased; =, no effect; DD, delay discounting; DOI, (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropan hydrochloride;

MA, methamphetamine.

however, similar regional and neurochemical differentiation
has been reported in the NAc of naturally occurring HI
animals (Jupp et al., 2013b; Simon et al., 2013).

In keeping with an implicit role of enhanced dopaminer-
gic neurotransmission in mediating drug reward and
reinforcement, pharmacological agents affecting the dopa-
minergic systems have a range of effects on addiction-like
behaviours in rodents. Systemic administration of D;- and
D,-like receptor antagonists result in compensatory increases
in responding for stimulant drugs under a FR schedule of
reinforcement (e.g. Corrigall and Coen, 1991a; Barrett et al.,
2004), but decrease break points and thus motivation to work
for drug under a PR schedule (e.g. Hubner and Moreton, 1991;
Richardson et al., 1994; 1zzo et al., 2001). By contrast, dopa-
mine receptor agonists reduce responding for stimulant drugs
under FR schedules, with D,-like receptor agonists decreasing
the rate of drug self-administration and D, receptor agonists
increasing the latency to initiate this behaviour (Caine et al.,
1999); this distinction may reflect distinct roles of D, and D,
receptors in drug reward and satiety (Suto and Wise, 2011).
However, the effects of dopaminergic agents on opiate,

alcohol and nicotine self-administration are less clear with
conflicting effects of pharmacological blockade in some cases
(e.g. Dyr et al., 1993; David et al., 2006; Rowlett et al., 2007).
Nevertheless, dopamine receptor antagonists, given either
systemically or directly in the NAc generally inhibit reinstate-
ment of drug-seeking for all major drug classes (reviewed in
Self, 2010) . However, systemic D, receptor agonists fail to
induce drug-seeking (Self et al., 1996) and actually reduce
both drug- and cue-induced relapse when given systemically
(De Vries et al., 1999). Thus, enhanced mesolimbic dopamine
appears to trigger relapse through D, receptor mechanisms
with D,-like receptor agonists potentiating drug-seeking
behaviour (Self et al., 1996; Edwards et al., 2007) Importantly,
however, the effects of D, and D, receptor agonists, such as for
impulsivity, appear again to be region-dependent, with D,
receptor agonists in the NAc core and shell sufficient to stimu-
late drug relapse (Bachtell et al., 2005), whereas D, receptor
agonists increase relapse only when given in the NAc shell
(Schmidt et al., 2006). Similarly, while relapse/reinstatement
can be blocked by the administration of D, receptor antago-
nists in the NAc shell (Bachtell etal., 2005) and core

British Journal of Pharmacology (2014) 171 4729-4766 4735



B Jupp and ] W Dalley

Table 2

Selected studies of region-specific dopaminergic interventions in impulsivity and addiction-related behaviour in rodent models

Region

Impulsive action

5-CSRTT

SSRTT

Impulsive choice

Self-administration

Reinstatement

Dopamine
re-uptake
inhibitor/
releaser

Amphetamine

D; agonist
SKF-38393

D; antagonist
SCH-23390

Methylphenidate

NAc

NAc core

NAc shell

NAc

NAc core

NAc shell

OFC

NAc core

NAc shell

DS

PFC

OFC

vHC

T (Cole and
Robbins, 1987)

T (Economidou
etal., 2012)

= (Economidou
etal., 2012)

T (Pezze et al.,
2007)

=§ (Winstanley
et al., 2010b)

| (Pattij et al.,
20072)

| (Pattij et al.,
2007a)

= (Eagle et al.,
2011)

! (Agnoli and Carli, | (Eagle etal.,

2011)

1§ (Winstanley
et al., 2010b)

2011)

T (Loos et al., 2010;
Pardey et al.,
2013)

= (Pardey et al.,
2013)

= (Abela and
Chudasama,
2014)

T FR ethanol
(Samson et al.,
1993; 1999)

= FR cocaine
(Bachtell et al.,
2005)

1 PR cocaine (Bari
and Pierce, 2005)

1 PR cocaine (Bari
and Pierce, 2005)

T FR cocaine
(Maldonado
etal., 1993)

T FR cocaine (Caine
and Koob, 1995;
Caine et al.,
1995)

1 PR cocaine (Olsen
and Duvauchelle,
2006)

T cocaine (Bachtell
et al., 2005)

T cocaine (Bachtell
et al., 2005)

J context-induced
ethanol
(Chaudhri et al.,
2009)

4 drug-primed
cocaine (Bachtell
et al., 2005)

{ stress-induced
cocaine (Capriles
et al., 2003)

= drug-primed
cocaine (Capriles
et al., 2003)

ddrug-primed
cocaine (Sun and
Rebec, 2005)

d context-induced
cocaine (Lasseter
etal.,, 2014)

d stress-induced
cocaine (Capriles
et al., 2003)
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Table 2

Continued

Region

Impulsive action

5-CSRTT SSRTT

Impulsive choice

Self-administration

Pharmacology of impulsivity and addiction

Reinstatement

D, agonist
7-OH-DPAT  NAc

Quinpirole

OFC

D, antagonist
Raclopride OFC

Sulpiride DS
Eticlopride NAc core
Aripiprazole
Sulpiride

NAc

NAc shell
Aripiprazole
Eticlopride

D; antagonist
Nafadotride NAc core
NAc shell

SB-277011A  NAc

T (Pezze et al.,
2007)

1§ (Winstanley
et al., 2010b)

T (Eagle et al.,
2011)

=* (amphetamine)
(Pattij et al.,
2007a)

=§ (Besson et al.,
2010)

= (Eagle et al.,
2011)

= (Pezze et al.,
2007)

= § (Besson et al.,
2010)

=* (amphetamine)
(Pattij et al.,
2007a)

1§ (Besson et al.,
2010)

7§ (Besson et al.,
2010)

= FR cocaine
(Bachtell et al.,
2005)

T FR ethanol
(Samson and
Chappell, 2003)

T (Pardey et al.,
2013)

= FR cocaine
(Bachtell et al.,
2005)

T FR ethanol (Levy
et al., 1991)

T FR cocaine,
(Phillips et al.,
1994)

d PR cocaine (Bari
and Pierce, 2005)

T FR cocaine
(Bachtell et al.,
2005)

T cocaine (shell)
(Schmidt et al.,
2006)

= stress,
context-induced
cocaine (Capriles
etal., 2003)

= drug-primed
cocaine
(Anderson et al.,
2006)

d drug-primed
cocaine
(Anderson et al.,
2006)

d drug-primed
cocaine (Bachtell
et al., 2005)

1 stress-induced
cocaine (Xi et al.,
2004)

*Denotes effect on pharmacologically increased/decreased levels of impulsivity, agent in parentheses.
§Denotes an effect in selected high-impulsive rats.

T, increased; 1, decreased; =, no effect; DS, dorsal striatum; MA, methamphetamine; vHC, ventral hippocampus.
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(Chaudhri et al., 2009) the effects of D, receptor antagonists
are limited to the NAc shell (Anderson et al., 2006).

The findings reviewed earlier, especially in relation to
psychostimulants, are consistent with the effects of acute
systemically administered dopaminergic agents on impulsive
action (e.g. as measured in the 5-CSRTT), but not impulsive
choice. Specifically, dopamine compounds that reduce or
increase impulsive action also, in general, reduce or increase
measures of drug reward and relapse (Table 1), with conver-
gence in terms of both regional and dopamine receptor
subtype specificity (Table 2). However, although systemically
administered D; and D, receptor agonists enhance reward
and at least in the case of D, receptors, stimulate relapse,
dopamine receptor agonists either have no effect (D;-like;
Winstanley et al., 2010b) or decrease premature responding
in the 5-CSRTT (D,-like; Besson etal.,, 2010). Moreover,
D,-like receptor blockade in the NAc shell reduces drug
reward and reinstatement (Anderson etal., 2006), but
increases premature responding in the 5-CSRTT (Besson et al.,
2010). Thus, manipulations that acutely alter dopamine
receptor function appear unlikely to collectively suppress
impulsivity and addiction-like behaviours.

S-Hydroxytryptaminergic agents

There is widespread support for a significant role of 5-HT in
modulating impulsivity and addiction-related processes
(Kranz et al., 2010; Hayes and Greenshaw, 2011; Kirby et al.,
2011; Dalley and Roiser, 2012; Miyazaki et al., 2012), through
interactions with dopamine (Kapur and Remington, 1996; Di
Matteo et al., 2008) and other neurotransmitter systems (Fink
and Gothert, 2007). A summary of the involvement of differ-
ent 5-HT receptor subtypes in impulsivity and their putative
loci of action is given in Tables 3 and 4. Near-complete deple-
tion of 5-HT in the brain increases impulsivity in the 5-CSRTT
(Harrison et al., 1997; Winstanley et al., 2004), the Go/No-go
task (Harrison et al., 1999) and the SSRTT (Eagle et al., 2009).
However, 5-HT depletion has variable effects on delay-
discounting impulsivity, which may be due to differing experi-
mental protocols (for discussion, see Winstanley et al. 2006).
Similarly, enhancing 5-HT levels via systemically administered
5-HT re-uptake inhibitors reduces impulsivity in the 5-CSRTT
(Baarendse and Vanderschuren, 2012; Humpston et al., 2013),
but has no effect on SSRTT performance (Bari et al., 2009) or
delay discounting (Evenden and Ryan, 1996; Baarendse and
Vanderschuren, 2012). Studies of receptor selective ligands
have predominantly implicated 5-HT, receptors in mediating
these effects. 5-HT,c receptor antagonists such as SB242084
increase premature responding in the 5-CSRTT (Winstanley
et al., 2004; Fletcher et al., 2007) while the 5-HT,c receptor
agonist WAY163909 reduces impulsivity on this task (Navarra
et al., 2008a). Interestingly, the mixed 5-HT,s.c receptor
antagonist ketanserin reduced (Passetti et al., 2003; Talpos
et al., 2006; Fletcher et al., 2007), while the 5-HT,,,c receptor
agonist DOI  ((+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-
aminopropan hydrochloride) increased premature respond-
ing in the 5-CSRTT (Koskinen et al., 2000). Consistent with
these results the selective 5-HT,, receptor antagonist M100907
decreased premature responding (Winstanley et al., 2003b;
Fletcher et al., 2007), similar to the effect of the mixed 5-HT3s,c
receptor agonist Ro60-175 (Fletcher et al., 2007). It is unclear
whether delay discounting is also bi-directionally modulated
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by 5-HT,a and 5-HT,c receptors, but both ketanserin and the
5-HT,c receptor antagonist SB242084 decrease this measure of
impulsivity (Hadamitzky and Koch, 2009; Hadamitzky et al.,
2009; Paterson et al., 2012). Finally, 5-HT; receptors have been
implicated in several variants of impulsivity, but the results
have been quite mixed. Thus, activation of 5-HT;, receptors
increases impulsivity on the delay-discounting task
(Winstanley et al., 2005b; van den Bergh ef al., 2006; Stanis
et al., 2008b; Blasio et al., 2012) and either increases (Carli and
Samanin, 2000), decreases (Blokland et al., 2005) or has no
effect (Winstanley et al., 2003b; Carli ef al., 2006) on prema-
ture responding in the 5-CSRTT.

Wide-ranging evidence also implicates a role for 5-HT in
reward and addiction (reviewed Filip et al., 2010; Hayes and
Greenshaw, 2011; Kirby et al., 2011). However, owing to the
complexity of this neurotransmitter system and its influence
on dopamine and other neurotransmitter systems, the precise
role of 5-HT in addiction-related processes is not always clear.
Globally depleting 5-HT in the brain tends to potentiate drug
reward, increasing stimulant drug self-administration under
both FR and PR schedules (e.g. Lyness et al., 1980; Roberts
etal., 1994) and drug-primed relapse (Tran-Nguyen et al.,
2001). Conversely, selective 5-HT re-uptake inhibitors gener-
ally decrease drug self-administration and relapse (Glatz et al.,
2002; Simon O’Brien et al., 2011).

A survey of specific 5-HT receptor subtypes reveals that
5-HT;, receptor activation enhances the rewarding effects of
drugs by decreasing drug self-administration under FR sched-
ules while increasing PR responding for cocaine (Peltier and
Schenk, 1993; Parsons et al., 1998) and alcohol (Wilson et al.,
1996) reinforcement. Tonic activity at 5-HT;, receptors
appears important for the rewarding effects of stimulant
drugs, demonstrated by the inhibition of drug-primed rein-
statement of cocaine-seeking by the selective 5-HT,, receptor
antagonist WAY100635 (Schenk, 2000; Burmeister etal.,
2004). Conversely, activation of 5-HT;; receptors attenuates
drug reward, increasing FR and decreasing PR responding for
cocaine (Parsons efal.,, 1998). Again, tonic activity at this
receptor subtype appears important for cocaine-motivated
behaviours, including reinstatement (David etfal., 2004;
Przegalinski et al., 2008).

However, the role of 5-HT, receptors in addiction-like
behaviour is more nuanced. Thus, while systemically admin-
istered 5-HT,4 receptor antagonists appear to have no effect
on the self-administration of cocaine or nicotine (Fletcher
etal., 2002; 2012; Nic Dhonnchadha et al., 2009) they do
reduce responding for alcohol when infused into the ventral
tegmental area (Ding et al., 2009). Selective 5-HT,, receptor
antagonists also inhibit drug- and cue-primed nicotine- and
cocaine-seeking (Nic Dhonnchadha etal., 2009; Fletcher
et al., 2012). The differential effect of these compounds on
self-administration and relapse has been suggested to relate to
the inhibition of dopamine release in the dorsal striatum, but
not the NAc by these agents following drug administration
(Murnane et al., 2013). By contrast, selective 5-HT,c receptor
antagonists tend to increase rates of cocaine (Fletcher et al.,
2002) and alcohol (Tomkins et al., 2002) self-administration,
and drug-primed relapse (Burmeister et al., 2004). Consistent
with these findings, selective 5-HT,c receptor agonists reduce
self-administration and cue-induced cocaine (Cunningham
et al., 2011) and nicotine (Higgins et al., 2012) reinstatement,



Table 3

Pharmacology of impulsivity and addiction

Selected studies employing 5-hydroxytryptaminergic interventions in models of impulsivity and addiction-related behaviour in rodent models

Impulsive action

Impulsive choice

5-HT re-uptake
inhibitor/
releaser

Citalopram

Fluvoxamine

Fluoxetine

Paroxetine
5-HT depletion
5,7-

dihydroxytrypt-
amine

5-HT:a agonist
8-OH-DPAT

Flesinoxan

5-HT1a antagonist
WAY100635

m-MPPI

5-HTs antagonist
GR55562

GR127935

5-CSRTT

l (Baarendse and
Vanderschuren,
2012; Humpston
etal., 2013)

= (Tsutsui-Kimura
et al., 2009)

4 (Humpston et al.,
2013)

4 (Humpston et al.,
2013)

T (Harrison et al.,
1997; Winstanley
et al., 2004)

T (Carli and Samanin,
2000)

= (Winstanley et al.,
2003b)

1 (Blokland et al.,
2005)

=/=*
(methylphenidate)
(Milstein et al.,
2010)

=/=*
(methylphenidate)
(Milstein et al.,
2010)

SSRTT

= (Bari et al.,
2009)

DD

= (Evenden and Ryan,
1996, Baarendse
and Vanderschuren,
2012)

T ( (Wogar et al.,
1993; Bizot et al.,
1999; Mobini et al.,
2000)

= (Winstanley et al.,
2003a; 2004)

T (Winstanley et al.,
2005b; Stanis et al.,
2008a; Blasio et al.,
2012)

T (van den Bergh
et al., 2006)

= (van den Bergh
et al., 2006)

Self-administration

= FR cocaine (Hiranita
et al., 2009)

1 FR ethanol (Lamb
and Jarbe, 2001)

1 FR ethanol (Simon
QO'Brien et al.,
2011)

1 FR cocaine (Glatz
etal., 2002)

T FR MA (Fletcher
et al., 1999)

T PR cocaine (Roberts
et al., 1994)

1 FR cocaine (Peltier
and Schenk, 1993)

1 PR cocaine (Parsons
et al., 1998)

1 FR ethanol (Wilson
et al., 1996)

1 PR cocaine (Parsons
et al., 1998)

d drug-primed

 stress- induced

! cue-induced

T drug-primed

{ drug-primed

d drug-primed

Reinstatement

cocaine
(Ruedi-Bettschen
et al., 2010)

ethanol (Simon
QO’Brien et al.,
2011)

cocaine
(Tran-Nguyen et al.,
2001)

cocaine
(Tran-Nguyen et al.,
2001)

cocaine (Schenk,
2000; Burmeister
et al., 2004)

cocaine
(Przegalinski et al.,
2008), |
cue-induced
cocaine
(Przegalinski et al.,
2008)
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Table 3

Continued

Impulsive action

Impulsive choice

5-HT1a18 agonist

Eltoprazine

RU24969

5-HT2a antagonist
M100907

5-HTa/c agonist
DOI

5-HT.a/c antagonist

Ketanserin

Ritanserin

5-HT.c agonist
WAY163909

Lorcaserin

5-HT,c antagonist
SB242084

5-CSRTT

= (Evenden, 1999b)

! (Winstanley et al.,
2003b; Fletcher
etal., 2007)

U* (dizocilpine)
(Higgins et al.,
2003)

\L*

(5,7-dihydroxytryptamine)

(Winstanley et al.,
2004)

T (Koskinen et al.,
2000; Blokland
et al., 2005)

| (Passetti et al.,
2003; Talpos et al.,
2006; Fletcher
et al., 2007)

1* (DOI) (Koskinen
et al., 2000)

1* (DOI) (Koskinen
et al., 2000)

! (Navarra et al.,
2008a)

T (Winstanley et al.,
2004; Fletcher
etal., 2007)

DD

! (van den Bergh
et al., 2006)

T (Hadamitzky and
Koch, 2009;
Hadamitzky et al.,
2009; Blasio et al.,
2012)

1* (DOI) (Hadamitzky
and Koch, 2009;
Hadamitzky et al.,
2009)

= (Paterson et al.,
2012 22094071)

| (Paterson et al.,
2012)

Self-administration

L FR, T PR cocaine
(Parsons et al.,
1998)

= FR cocaine (Nic
Dhonnchadha
et al., 2009)

= PR cocaine (Fletcher
et al., 2002)

= FR, PR nicotine
(Fletcher et al.,
2012)

1 FR ethanol (Maurel
et al., 1999)

4 FR nicotine (Levin
et al., 2008)

= FR MA (Fletcher,
1998)

4 FR cocaine
(Cunningham
etal., 2011)

4 FR nicotine (Higgins
etal., 2012)

T FR, PR cocaine
(Fletcher et al.,
2002)

T FR ethanol
(Tomkins et al.,
2002)

Reinstatement

 drug-primed
cocaine (Acosta
et al., 2005)

! cue-induced
cocaine (Acosta
et al., 2005)

! cue-induced
cocaine (Nic
Dhonnchadha
et al., 2009)

! drug- primed
nicotine,
cue-induced
nicotine (Fletcher
etal.,, 2012)

| cue-induced
cocaine (Burmeister
et al.,, 2004)

= cocaine (Schenk,
2000)

! cue-induced
cocaine
(Cunningham
etal.,, 2011)

4 nicotine,
cue-induced
nicotine (Higgins
etal., 2012)

= cue-induced MA
(Graves and Napier,
2012)

T drug-primed
cocaine,
(Burmeister et al.,
2004)
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Table 3

Continued

Impulsive action

5-CSRTT SSRTT DD

Pharmacology of impulsivity and addiction

Impulsive choice

Self-administration Reinstatement

5-HT2s/c agonist

R060-0175 ! (Fletcher et al.,

2007)

5-HT2s/c antagonist

SER-082 = (Talpos et al., 2006)

5-HTs antagonist

SB215505 = (Fletcher et al.,

2007)

5-HT; antagonist

MDL72222 ! (Evenden, 1999a)

Ondansetron

5-HTs antagonist
SB270146A = (Talpos et al., 2006)

CMP42 = (de Bruin et al.,
2013)

| (Talpos et al., 2006)

= (Talpos et al., 2006)

l FR, PR cocaine ! cue-induced
(Fletcher et al., nicotine (Fletcher
2004) etal., 2012)

1 FR, PR nicotine  stress- induced
(Fletcher et al., cocaine (Fletcher
2012) et al., 2008)

! context- induced
cocaine (Fletcher
et al., 2008)

= FR cocaine (Filip, = cue-induced MA
2005) (Graves and Napier,

2012)

= drug-primed
cocaine (Filip,
2005)

= cue-induced
cocaine (Filip,
2005)

L FR, TPR cocaine T cue-induced
(Fletcher et al., cocaine (Fletcher
2002) et al., 2002)

1 FR ethanol
(McKinzie et al.,
2000)

= FR nicotine
(Corrigall and
Coen, 1994)

= PR cocaine (Lacosta
and Roberts, 1993)

= FR cocaine (Lane { stress- induced
etal., 1992) ethanol (Le et al.,
1 PR cocaine 2006)
(Davidson et al.,
2002)

! cue- induced
nicotine (de Bruin
etal.,, 2013)

! cue- induced
ethanol (de Bruin
etal.,, 2013)

1 FR nicotine (de
Bruin et al., 2013)

*Denotes effect on pharmacologically increased/decreased levels of impulsivity, agent in parenthees.
T, increased; |, decreased; =, no effect; DOI, (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropan hydrochloride; MA, methamphetamine.

an effect that appears to be mediated by the prefrontal cortex
(PFC; Pentkowski etal., 2010). Selective 5-HT,; receptor
antagonism enhances drug reward, reducing responding for
cocaine under a FR schedule, while increasing responding
under a PR schedule and augmenting drug-primed relapse
behaviour (Fletcher et al., 2002). However, mixed 5-HTp/c

receptor antagonists have no effect on drug self-
administration or drug-seeking behaviour (Filip, 2005; Graves
and Napier, 2012), although mixed 5-HT,c receptor agonists
decreased these behaviours (Fletcher et al., 2004; 2008; 2012).
Finally, 5-HT; receptor antagonism generally reduces
responding for ethanol and cocaine (Tomkins et al., 1995;
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Table 4

Selected studies of region-specific 5-hydroxytryptaminergic interventions in rodent models of impulsivity

Region Impulsive action

Impulsive choice

Intervention

5-HT depletion
5,7-dihydroxytryptamime PFC

5-HT;a agonist
8-OH-DPAT PFC

5-HT,4 antagonist

5-HT,c antagonist
SB242084 NAc

5-HTa/c agonist

5-HT,a/c antagonist

5-HT2gc agonist
R060-0175 DS

= (Fletcher et al., 2009)
NAc = (Fletcher et al., 2009)

= (Winstanley et al., 2003b)
=* (m-CPP) (Carli et al., 2006)

M100907 PFC | (Winstanley et al., 2003b)
= (Robinson et al., 2008a)
* (m-CPP) (Carli et al., 2006)
DS 1* (m-CPP) (Agnoli and Carli, 2012)
NAc d (Robinson et al., 2008a)

T (Robinson et al., 2008a)
PFC = (Robinson et al., 2008a)

DOI NAc Core = (Koskinen and Sirvio, 2001)
NAc Shell = (Koskinen and Sirvio, 2001)
OFC = (Hadamitzky and Koch, 2009) T (Wischhof et al., 2011)
BLA = (Hadamitzky and Koch, 2009)
OFC + BLA T (Hadamitzky and Koch, 2009)

Ketanserin PFC | (Passetti et al., 2003)
OFC = (Hadamitzky and Koch, 2009)
BLA = (Hadamitzky and Koch, 2009)
OFC + BLA = (Hadamitzky and Koch, 2009)

1* (m-CPP) (Agnoli and Carli, 2012)

5-CSRTT DD

*Denotes effect on pharmacologically increased/decreased levels of impulsivity, agent in parentheses.
T, increased; ldecreased; =, no effect; BLA, basolateral amygdala; m-CPP, meta-chloropiprazine; DOI, (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-

2-aminopropan hydrochloride; DS, dorsal striatum.

McKinzie et al., 2000; Davidson et al., 2002), similar to the
effects of 5-HTs receptor antagonists, which decrease nicotine
self-administration as well as both cue- and drug-primed
relapse (de Bruin et al., 2013).

The findings reviewed earlier indicate a significant
overlap in 5-hydroxytryptaminergic mechanisms affecting
impulsivity and addiction-like behaviours in rodents
(Table 3). Again, similar to the effect at other transmitter
systems, pharmacological agents that reduce impulsive
action (rather than impulsive choice) also reduce drug self-
administration and drug-seeking, whereas agents that
enhance impulsive action also potentiate addiction-like
behaviours. However, despite an involvement of S5-HT,,
5-HT;; and 5-HTs receptors in reward and addiction-like
behaviour (reviewed earlier), there is no convincing evidence
they play a major role in impulsive action.
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Noradrenergic agents

A role for noradrenaline in impulsivity is substantiated by the
clinical efficacy of amphetamine and methylphenidate in
ADHD, which act to enhance noradrenaline as well as dopa-
mine transmission in the brain [reviewed in Del Campo et al.
(2011)] and more specifically by the effectiveness of the
selective noradrenaline re-uptake inhibitor (NARI) atomox-
etine in ADHD (Simpson and Plosker, 2004; Faraone et al.,
2005) and animal models of impulsivity (Blondeau and
Dellu-Hagedorn, 2007; Navarra et al., 2008b; Robinson et al.,
2008b; Tsutsui-Kimura et al., 2009; Fernando et al., 2012; see
Table 5). In addition, mixed 5-HT/noradrenaline re-uptake
inhibitors such as desipramine (van Gaalen et al., 2006b;
Paine et al., 2007), milnacipran (Tsutsui-Kimura et al., 2009)
and venlafaxine (Humpston etal., 2013) are effective in
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Table 5

Selected studies of systemically administered (unless otherwise stated) noradrenergic interventions in rodent models of impulsivity and addiction-
like behaviour

Impulsive action

Impulsive choice

SSRTT DD Self-administration Reinstatement

NA re-uptake
inhibitor

Atomoxetine

Reboxetine
NA/DA re-uptake

inhibitor
Buproprion

NA/5-HT re-uptake
inhibitor

Desipramine

Milnacipran

Subutramine
Venlafaxine

o4 agonist
Phenylephrine

o antagonist

Prazosin

1§ (Blondeau and
Dellu-Hagedorn,
2007; Fernando
etal., 2012)

! (Navarra et al.,
2008b; Robinson
et al., 2008b;
Tsutsui-Kimura
et al., 2009)

d (Liu et al., 2009)

= (Humpston et al.,
2013)

| (van Gaalen et al.,
2006b; Paine et al.,
2007; Pattij et al.,
2012)

! (Tsutsui-Kimura
et al., 2009)

= (Humpston et al.,
2013)

! (Humpston et al.,
2013)

L (Liu et al, 2009)
1* (DOI) (Koskinen
etal., 2003)

d (Robinson et al.,
2008b; Bari et al.,
2009)

! (Robinson et al.,
2008b)

= (Baarendse and
Vanderschuren,
2012)

T (Broos et al.,
2012b)

= (van Gaalen et al.,
2006a)

= (van Gaalen et al.,
2006a)

d FR nicotine (Rauhut
etal., 2002)

J FR MA (Reichel
et al., 2009)

d FR nicotine (Liu
et al., 2008)

= PR nicotine
(Bruijnzeel and
Markou, 2003)

= FR cocaine (Tella,
1995)

= FR cocaine (Ecke
etal., 2012)

{ FR nicotine (Forget
etal., 2010)

! cue-induced
cocaine
(Economidou et al.,
2009; 2011)

T cue-induced
nicotine (Liu et al.,
2008)

! cue-induced
ethanol (Simon
QO’Brien et al.,
2011)

J cue-induced
ethanol (Simon
O’Brien et al.,
2011)

 stress- induced
ethanol (Le et al.,
2011)

d drug- primed
cocaine (Zhang and
Kosten, 2005)

! drug-primed, cue-
induced nicotine
(Forget et al., 2010)
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Table 5

Continued

Impulsive action

Impulsive choice

DD Self-administration

Reinstatement

5-CSRTT SSRTT
o agonist
Guanfacine 18§ (Fernando et al.,
2012)
1 (Milstein et al.,
2007)
Clonidine
Lofexidine
Imidazoline

o antagonist

Yohimbine T (Sun et al., 2010;
Torregrossa et al.,
2012)

Atipamezole T (Koskinen et al.,
2003)

Idazoxan = (Humpston et al.,
2013)

3, agonist
Clenbuterol d (Pattij et al., 2012)

B antagonist

U* (methylphenidate)
(Milstein et al.,
2010)

Propranolol

1 VHC (Abela and
Chudasama, 2014)

T (van Gaalen et al.,
2006a)

| FR ethanol (Le et al.,
2005)

T FR ethanol (Le et al.,
2005)

TER, PR nicotine (Li
etal., 2012)

0 FR, PR ethanol (Gilpin
and Koob, 2010)

1 FR cocaine (Harris
etal., 1996)

! stress-induced
cocaine (Buffalari
etal., 2012)

{ stress- induced
ethanol (Le et al.,
2011)

! cue-induced
cocaine (Smith and
Aston-Jones, 2011)

{ stress- induced
cocaine (Erb et al.,
2000)

= drug primed
cocaine (Erb et al.,
2000)

! stress- induced

nicotine (Zislis et al.,
2007)

! stress- induced
ethanol (Le et al.,
2005)

! cue- induced
cocaine (Smith and
Aston-Jones, 2011)

T cocaine (Feltenstein
and See, 2006)

T MA (Shepard et al.,
2004)

T ethanol (Le et al.,
2005)

T nicotine (Feltenstein
etal., 2012)

T cue- induced
cocaine (Feltenstein
etal., 2011;
Buffalari et al.,
2012)

! cue- induced
nicotine
(Chiamulera et al.,
2010)

*Denotes effect on pharmacologically increased/decreased levels of impulsivity, agent in parentheses.

§Denotes an effect in selected high-impulsive rats.

T, increased; | decreased; = no effect; MA, methamphetamine; vHC, ventral hippocampus.
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reducing action impulsivity. These findings contrast with the
mixed dopamine/noradrenaline re-uptake inhibitor buprop-
rion, which has no effect on impulsive action (Humpston
etal., 2013) presumably as a result of opponent effects of
dopamine on this task (Dalley et al., 2011). The effects of
noradrenaline on impulsive action appear to be mediated by
oy, o and Py-adrenoceptors. Thus, systemic administration
of oy receptor antagonists (Milstein et al., 2007; Liu et al.,
2009) and o,-adrenoceptor agonists (Milstein et al., 2007;
Fernando etal., 2012) reduce, whereas o,-adrenoceptor
antagonists, increase action impulsivity (Koskinen etal.,
2003; Sun et al., 2010; Torregrossa et al., 2012). An action at
B-adrenoceptors has also been implicated in this form of
impulsivity, with a recent study demonstrating an effect of
the B,-adrenoceptor selective agonist clenbuterol to reduce
impulsivity, as measured by the 5-CSRTT (Pattij et al., 2012).
This appears somewhat at odds with data demonstrating an
effect of the non-selective B-adrenoceptor antagonist pro-
pranolol to reduce premature responding induced by meth-
ylphenidate (Milstein et al., 2010). Clearly further studies are
required to delineate the relative contributions of B;- and
B.-adrenoceptors to this behaviour.

While there is conflicting evidence for a role of NARIs in
impulsive choice (van Gaalen et al., 2006a; Robinson et al.,
2008b; Baarendse and Vanderschuren, 2012; Broos etal.,
2012b), systemic administration of the o-adrenoceptor
agonist clonidine appears to increase this form of impulsivity
(van Gaalen et al., 2006a), but curiously has the opposite
effect when infused directly in the hippocampus (Abela and
Chudasama, 2014). Consistent with region-specific effects of
noradrenaline transmission on distinct impulsivity subtypes
a recent study found that atomoxetine reduces impulsivity in
the 5-CSRTT when administered in the NAc shell, but not the
NAc core or the PFC (Economidou et al., 2012).

Noradrenaline is thought to contribute to drug reward
and addiction through dopamine-dependent and dopamine-
independent processes (reviewed in Weinshenker and
Schroeder, 2007). Pharmacological manipulation of this
system affects several measures of addiction-related behav-
iours in rodents (Table 5). While these generally have little
effect on psychostimulant self-administration (reviewed in
Sofuoglu and Sewell, 2009) there is mounting evidence that
noradrenergic mechanisms modulate ethanol, nicotine and
opiate self-administration, specifically via oy- (Rasmussen
et al., 2009; Forget et al., 2010), but not o,- (Le et al., 2005;
Marinelli et al.,, 2007; Li etal., 2014) adrenoceptors. Thus,
og-adrenoceptor antagonists such as prazosin attenuate drug-
primed reinstatement (Zhang and Kosten, 2005), putatively
by decreasing dopamine release in the NAc (Lane et al., 1988).

Previous research indicates that noradrenaline plays a
critical role in cue- and stress-induced drug relapse. Atomox-
etine has been found to inhibit cue-induced cocaine rein-
statement (Economidou et al., 2009; 2011), while the mixed
5-HT/noradrenaline re-uptake inhibitors desipramine and
milnacipran reduce cue-induced ethanol reinstatement
(Simon O’Brien etal, 2011). Conversely, the mixed
noradrenaline/dopamine re-uptake inhibitor buproprion
enhances nicotine cue-induced reinstatement (Liu et al., 2008)
presumably as a consequence of increased tonic activity at
dopamine receptors. In terms of specific receptor subtypes
oy-adrenoceptor antagonists (e.g. Forget et al., 2010; Le et al.,
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2011) and o,-adrenceptor agonists (e.g. Erb et al., 2000; Le
et al., 200S5; Zislis et al., 2007; Smith and Aston-Jones, 2011)
reduce reinstatement to drug-associated cues and various
stressors. By contrast, the a,-adrenoceptor antagonist yohim-
bine facilitates reinstatement to all major classes of abused
drugs (psychostimulants, alcohol, opiates, nicotine) (Shepard
et al., 2004; Le et al., 2005; Feltenstein and See, 2006; Banna
et al., 2010; Feltenstein et al., 2012). Yohimbine also potenti-
ates the effects of cue-exposure on cocaine-seeking
(Feltenstein et al., 2011). In addition, B-adrenoceptors con-
tribute to cue- and stress-induced reinstatement (e.g. Leri
et al., 2002; Chiamulera et al., 2010).

In keeping with the findings reviewed to date, there is
considerable overlap in noradrenergic manipulations of
impulsive action and addiction-like behaviour. Thus, drugs
that decrease action impulsivity also act to reduce drug self-
administration and/or inhibit relapse and vice versa. However,
there is little overlap of these behaviours with impulsive
choice (Table 5).

Glutamatergic agents

As shown in Table 6, systemic administration of non-
competitive glutamatergic NMDA receptor antagonists pre-
dominantly have the effect of increasing impulsive action
(Amitai et al., 2007; Paine et al., 2007; Oliver et al., 2009;
Fletcher etal., 2011) and impulsive choice (Floresco et al.,
2008; Cottone et al., 2013). At least in the case of impulsive
action this effect appears to be mediated by GluN2B-
containing receptors (for nomenclature see Alexander et al.,
2013b). Thus, the selective GluN2B NMDA receptor antago-
nist Ro63-1908 decreased impulsivity in the 5-CSRTT
(Higgins et al., 2005; Burton and Fletcher, 2012). Qualita-
tively similar effects are reported for metabotropic glutamate
receptor (mGlu) antagonists (for nomenclature see Alexander
et al., 2013a), specifically acting at the mGlus subtype on the
5-CSRTT (Semenova and Markou, 2007). Interestingly, mGlu,
receptor antagonism decreased impulsive choice on a delay-
discounting task (Sukhotina et al., 2008).

While there is an abundance of evidence implicating
NMDA, AMPA, kainic acid receptors, metabotropic receptors
[e.g. mGlu; (Li ef al., 2010)] and excitatory amino acid trans-
porters in addiction-related behaviours (for a comprehensive
review, see Gass and Olive, 2008), we have limited our dis-
cussion to only those glutamatergic agents evaluated in
rodent models of impulsivity. NMDA receptor antagonists
generally attenuate drug self-administration and measures of
drug reward including conditioned-place preference (e.g.
Hyytia et al., 1999; Glick et al., 2001; Blokhina et al., 2005;
Yonghui etal., 2006; Sabino etal., 2013). One notable
exception, however, is MK-801, which increases cocaine self-
administration (Allen et al., 2005) and augments relapse to
cocaine (De Vries et al., 1998b). Curiously, MK-801 also inhib-
its cue-induced relapse to ethanol (von der Goltz et al., 2009),
an effect resembling the actions of selective GluN2B NMDA
receptor antagonists to reduce drug- and cue-induced rein-
statement of ethanol (Vengeliene et al., 2005; Wang et al.,
2010) and nicotine seeking (Gipson et al., 2013). Systemically
administered GluN2B receptor antagonists also reduce the
self-administration of ethanol in rats (Wang etal., 2010).
Other studies have shown that mGlu;, mGlu,; and mGlus
receptor antagonists reduce self-administration of, and
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Table 6

Selected studies of systemically administered (unless otherwise stated) interventions of glutamatergic, GABAergic, opioidergic, cholinergic and
cannabinoid neurotransmission in rodent models of impulsivity and addiction-like behaviour

Impulsive action Impulsive choice

SSRTT/Go/No-go DD

Self-administration Reinstatement

Glutamate
Non-competitive
NMDA
antagonist
MK-801 T (Paine et al., LFR, TPR cocaine 1 cue-induced
2007) (Allen et al., ethanol (von der
2005) Goltz et al.,
2009)
Ketamine T (Oliver et al., T (Cottone et al., 1 FR ethanol
2009) 2013) (Sabino et al.,
= (Nemeth et al., T (Floresco et al., 2013)
2010) 2008)
Memantine T (Cottone et al., 1 FR ethanol
2013) (Sabino et al.,
= (Oberlin et al., 2013)
2010) LFR, PR cocaine
(Hyytia et al.,
1999)
PCP T (Amitai et al., LFR ethanol
2007) (Shelton and
Balster, 1997)
Selective
glutamate
receptor
antagonist
R063-1908 T (Higgins et al.,
(NMDA 2B) 2005; Burton and
Fletcher, 2012)
Ifenprodil d drug-primed
(NMDA 2B) ethanol
(Vengeliene et al.,
2005)
 cue-induced
nicotine (Gipson
etal., 2013)
EMQMCM 4 (Sukhotina et al., J cue-induced
(mGluy) 2008) nicotine, drug-
primed nicotine
(Dravolina et al.,
2007)
INJ16259685 J context- induced
(mGluy) cocaine (Xie
et al., 2012b)
LY341495 = (Semenova and LFR, IPR cocaine d cue-induced
(mGluys) Markou, 2007) (Allen et al., ethanol
2005) (Backstrom and
| FR ethanol Hyytia, 2005)
(Backstrom and d cue-induced
Hyytia, 2005) cocaine (Baptista
et al., 2004)
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Continued

Impulsive action
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Impulsive choice

MPEP (mGlus)

GABA
GABA-mimetic
Ethanol

Vigabatrin

GABA, agonist

Diazepam

Chlordiazepoxide

GABAg agonist
Baclofen

Opioid
Non-selective
antagonist
Naloxone

1 (Semenova and
Markou, 2007)

T (Oliver et al., 2009)

T (Oliver et al., 2009)
= § (Molander et al.,
2011)

T ILC (Murphy et al.,
2012)

T MRN (Le et al.,
2008)

. STN (Baunez and
Robbins, 1999)

= (Pattij et al., 2009;
Wiskerke et al.,
2011b)

= * (nicotine)
(Wiskerke et al.,
2012)

U* (amphetamine,
GBR12909)
(Wiskerke et al.,
2011b)

SSRTT/Go/No-go

T (Olmstead et al.,
2006)

T (Thiebot et al.,
1985)

T (Cardinal et al.,
2000)

T OFC (Zeeb et al.,
2010)

T VHC (Abela and
Chudasama,
2014)

T NAc Core
(Ghods-Sharifi
and Floresco,
2010)

= NAc Shell
(Ghods-Sharifi
and Floresco,
2010)

1 STN (Winstanley
et al., 2005a)

= (Pattij et al., = (Pattij et al.,
2009) 2009)
=/=*

(amphetamine)
(Wiskerke et al.,
2011b)

Self-administration

1 FR ethanol
(Schroeder et al.,
2005)

LFR, LPR nicotine
(Paterson and
Markou, 2005)

LFR, PR cocaine
(Paterson and
Markou, 2005)

1 FR ethanol
(Shelton and
Balster, 1997)

L FR cocaine (Filip
et al., 2007)

1 FR cocaine
(Augier et al.,
2012)

L FR, PR cocaine
(Brebner et al.,
2000)

1 FR nicotine
(Fattore et al.,
2002)

1 FR cocaine
(Kiyatkin and
Brown, 2003)

L FR nicotine
(Ismayilova and
Shoaib, 2010)

Reinstatement

d cue-induced
cocaine
(Backstrom and
Hyytia, 2006)

dcue-induced
nicotine
(Palmatier et al.,
2008)

| drug-primed
nicotine (Tessari
et al., 2004)

{ drug-primed
cocaine (Filip
et al., 2007)

{ drug-primed
nicotine (Fattore
et al., 2009)

! drug-primed
cannabinoid
(Spano et al.,
2004)
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Table 6

Continued

Impulsive action

Impulsive choice

U agonist
Morphine

4 antagonist
Naltrindol

K agonist

Salvinorin A

U50 488

U69593

K antagonist
Nor-BNI

Cannabinoid
CB, agonist
WIN 55212-2

CB; antagonist
SR141716A

SSRTT/Go/No-go

T (Pattij et al., = (Pattij et al.,

2009) 2009)
=/=*
(amphetamine)
(Wiskerke et al.,
2011b)
= (Nemeth et al.,
2010)
T (Walker and
Kissler, 2013)
== = (Walker and
(amphetamine, Kissler, 2013)
nicotine)

(Wiskerke et al.,
2011b; 2012)

= (Pattij et al.,
2007b)

=)= *
(GBR12909)/1*
(nicotine)
(Wiskerke et al.,
2012)

U* (amphetamine)
(Wiskerke et al.,
2011a)

| (Pattij et al.,
2007b)

T (Pattij et al.,
2009)

=/=*
(amphetamine)
(Wiskerke et al.,
2011b)

= (Walker and
Kissler, 2013)

=/=*
(amphetamine)
(Wiskerke et al.,
2011b)

= (Pattij et al.,
2007b)

= (Pattij et al.,
2007b)

T* (amphetamine)
(Wiskerke et al.,
2011a)

Self-administration

= FR nicotine
(Ismayilova and
Shoaib, 2010)

= FR cocaine (de
Vries et al., 1995)

LFR nicotine
(Ismayilova and
Shoaib, 2010)

LFR cocaine (Glick
etal., 1995)

= FR cocaine (Glick
et al., 1995)

1 PR cocaine (Wee
et al., 2009)

L FR ethanol
(Walker et al.,
2011)

T FR nicotine
(Gamaleddin
etal., 2012)

LFR, PR ethanol
(Economidou
et al., 2006)

= FR cocaine (De
Vries et al., 2001)

Reinstatement

J cue-induced
ethanol
(Ciccocioppo
etal., 2002;
Marinelli et al.,
2009)

{ drug-primed
cocaine (Schenk
et al., 2000)

 stress- induced
cocaine (Redila
and Chavkin,
2008)

T drug-primed,
cue- induced
nicotine
(Gamaleddin
etal., 2012)

T drug-primed
ethanol (Alen
et al., 2008)

J cue-induced
ethanol
(Economidou
et al., 2006)

J cue-induced
cocaine (De Vries
etal., 2001)
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Table 6

Continued

Impulsive action Impulsive choice
SSRTT/Go/No-go DD Self-administration Reinstatement
SLV330 1 (de Bruin et al., LFR ethanol, d cue-induced
2011) nicotine (de ethanol, nicotine
Bruin et al., (de Bruin et al.,
2011) 2011)
0-2050 bl T* (amphetamine)
(amphetamine) (Wiskerke et al.,
(Wiskerke et al., 2011a)
2011a)
Cholinergic
nACh agonist
Nicotine T (Blondel et al., T (Kolokotroni T (Dallery and
2000) etal., 2011) Locey, 2005;
Kolokotroni et al.,
2011)
nACh antagonist
Mecamylamine ! (Ruotsalainen = (Mendez et al., L FR cocaine (Levin ! cue-induced
(04p2) et al., 2000; 2012) et al., 2000) nicotine (Liu
Tsutsui-Kimura L* (nicotine) 1 FR ethanol et al., 2007)
et al., 2010) (Kolokotroni (Kuzmin et al.,
* (nicotine) etal., 2011) 2009)
(Kolokotroni L FR nicotine
etal., 2011) (Watkins et al.,
1999)
Methyllycaconitine = (Tsutsui-Kimura = FR ethanol (Le = cue-induced
(a7) etal., 2010) et al., 2000) nicotine (Liu,
2014)
= drug-primed

ethanol (Kuzmin
et al., 2009)
Non-selective
mACh
agonist
Oxotremorine = (Mirza and = (Mendez et al., L FR cocaine
Stolerman, 2000) 2012) (Rasmussen et al.,
2000; Thomsen
etal., 2010)

Non-selective

mACh
antagonist
Scopolamine = (Ruotsalainen T (Mendez et al., ! ethanol (Rezvani 4 drug-primed
et al., 2000) 2012) etal., 1991) cocaine (Yee
T (Shannon and etal., 2011)
Eberle, 2006)
d (Mirza and
Stolerman, 2000)
Atropine T (Mendez et al., 0 FR amphetamine
2012) (Davis and Smith,
1975)

*Denotes effect on pharmacologically increased levels of impulsivity, agent in parentheses.

§Denotes effect in selected high-impulsive rats.

T, increased; |, decreased; =, no effect; BLA, basolateral amygdala; ILC, infralimbic cortex; MA, methamphetamine; mACh, muscarinic ACh
receptor; MRN, median raphe nucleus; nACh, nicotinic ACh receptor; PCP, phencyclidine; STN, subthalamic nucleus; vHC, ventral
hippocampus.
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relapse to, many classes of abused drugs (e.g. Backstrom and
Hyytia, 2005; Dravolina et al., 2007; Xie et al., 2010; 2012b).

In view of the predominantly consistent effect of antago-
nism at NMDA and mGlu receptors to enhance measures of
action impulsivity, but reduce self-administration and relapse-
like behaviour, it is unlikely that the link between action
impulsivity and addiction is driven via activity in the gluta-
matergic system. There is the possibility, however, that action
at mGlu, receptors may link addiction-related behaviours and
impulsive choice given that antagonism at this receptor
subtype commonly reduces both behavioural categories (e.g.
Dravolina et al., 2007; Sukhotina et al., 2008).

GABAergic agents

While few studies have investigated the role of GABA in
impulsivity (Hayes et al., 2014), GABA, and GABA; agonists
have generally been found to increase measures of impulsive
action (Oliver et al., 2009) and impulsive choice (Thiebot
etal., 1985; Cardinal etal., 2000; Olmstead etal.,, 2006;
Table 6). However, enhancing GABAergic activity tends to
decrease drug self-administration (Augier et al., 2012) and
relapse to drug-seeking (Filip et al., 2007; Fattore et al., 2009).
Nevertheless, intracerebral infusions of GABA agonists have
been shown to reduce impulsivity (e.g. Baunez and Robbins,
1999) suggesting that activity in local GABAergic microcir-
cuits may bear a closer correspondence with impulsivity and
addiction-related behaviours.

Opioidergic agents

Systemic administration of the non-selective p-opioid recep-
tor agonist morphine has been found to increase impulsivity
in both delay discounting and the 5-CSRTT (Pattij et al.,
2009). At least for impulsive action, phasic activation at
8-opioid receptors has also been implicated in enhancing
impulsivity (Befort et al., 2011). Interestingly, antagonism at
p-opioid receptors has been shown to attenuate the effects of
amphetamine and the dopamine re-uptake inhibitor
GBR12909 to increase impulsivity in this task (Wiskerke et al.,
2011b), suggesting again that dopamine transmission is
subject to modulation by a myriad of neurotransmitters,
putatively at the level of the mesolimbic dopamine system
(Diergaarde et al., 2008). There is little evidence, however, for
tonic activity at opioid receptors in mediating impulsive
action or choice (e.g. Pattij et al., 2009; Wiskerke et al., 2011b;
2012).

Available evidence suggests some overlap between opioi-
dergic mechanisms capable of affecting both impulsivity and
addiction-related behaviours (Table 6). In general, pu- and
8-opioid receptor agonists are capable of enhancing drug self-
administration (e.g. Sabino etal.,, 2007) and relapse-like
behaviour (e.g. Simmons and Self, 2009), although it should
be noted that there was regional specificity in these effects
(reviewed in Le Merrer et al., 2009). Unlike the null findings
for impulsivity, however, u- and -opioid receptor antagonists
generally reduce these behaviours [(e.g. Corrigall and Coen,
1991b; Ciccocioppo et al., 2002; Kiyatkin and Brown, 2003;
Spano et al., 2004); for review, see van Ree et al., 1999]. It
remains to be seen whether such antagonists are capable
of reducing impulsivity in animals with endogenously
enhanced levels of this trait.
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Cannabinoids

Despite a relative paucity of studies, the cannabinoid system
offers potential scope for pharmacological intervention in
both impulsivity and addiction. For example, tonic activity at
cannabinoid type 1 receptors has been found to modulate
nicotine-induced increases in impulsive responding on the
5-CSRTT (Wiskerke et al., 2012). Furthermore, selective CB,;
receptor antagonists are capable of reducing baseline impul-
sivity as measured on this task (Pattij et al., 2007b; de Bruin
et al., 2011); however, they have been found to have no effect
on delay-discounting performance (Pattij et al., 2007b). Sys-
temic administration of CB, receptor antagonist SR141716A
(rimonabant) in rats has been found to suppresses the self-
administration of many drugs of abuse (reviewed in
Maldonado et al.,, 2006), including ethanol (e.g. Cippitelli
et al., 2005; Economidou etfal.,, 2006) and nicotine (e.g.
Cohen et al., 2002); however, findings for cocaine are variable
(e.g. De Vries et al., 2001; Soria et al., 2005). The same com-
pound also inhibits cue-induced cocaine, nicotine and
ethanol reinstatement (e.g. De Vries etal., 2001; 2005;
Economidou et al., 2006).

Cholinergic agents

A role for cholinergic mechanisms in impulsivity is supported
by the common effect of nicotine to increase impulsive
action (Blondel et al., 2000; Kolokotroni etal., 2011) and
impulsive choice (Dallery and Locey, 2005; Kolokotroni et al.,
2011). Recent studies indicate that these effects may be medi-
ated by nicotinic 042 receptors (Tsutsui-Kimura et al., 2010;
Xie etal., 2012a). Interestingly, nicotininc «4f2 receptor
antagonists also attenuate self-administration and relapse-
like behaviour to nicotine and alcohol (Watkins et al., 1999;
Liu et al., 2007; Kuzmin et al., 2009). Additionally, activity at
muscarinic cholinoceptors has been found to modulate both
measures of impulsivity and addiction-related behaviours.
Although phasic muscarinic receptor activation appears to
have no effect on impulsivity (Mirza and Stolerman, 2000;
Mendez et al., 2012), administration of non-selective mus-
carinic antagonists are reported to enhance delay discounting
(Mendez etal., 2012). However their effect on impulsive
action is less clear with evidence for both increased (Shannon
and Eberle, 2006) and decreased (Mirza and Stolerman, 2000)
impulsivity on the 5-CSRTT. It is possible that variability of
these findings may occur as a result of competing effects on
attention (e.g. Ruotsalainen ef al., 2000). Other measures of
behavioural inhibition such as DRL-72 and reaction time
tasks, however, are generally impaired with reports of
increased impulsivity (Blokland et al., 2001; Jayarajan et al.,
2013). Interestingly, muscarinic M; receptor knock-out mice
exhibit enhanced impulsivity on the 5-CSRTT independent
of any effect on attention (Bartko et al., 2011). There have
also been discrepancies with the effect of muscarinic agents
on drug reward and reinforcement. Non-selective muscarinic
receptor agonists have been shown to reduce cocaine self-
administration (Rasmussen etal., 2000; Thomsen etal.,
2010), putatively mediated by M,;/M, receptors (Dencker
etal.,, 2012; Thomsen etal., 2014). Interestingly, non-
selective antagonism at muscarinic receptors has also been
shown to reduce self-administration of methamphetamine
(Davis and Smith, 1975) suggesting there may be drug and/or



receptor subtype-specific contributions of muscarinic signal-
ling to drug reward and reinforcement.

Other neurotransmitter systems

Beyond those reviewed earlier, there is evidence for a role of
other neurotransmitter systems in impulsivity and addiction-
like behaviours. Despite being widely implicated in addiction
(reviewed in Boutrel, 2008; Schank ef al., 2012), the contri-
bution of stress-related neuropeptides to impulsive behaviour
has been less well investigated. There is evidence that neuro-
kinin 1 (NK;) receptor antagonists reduce delay discounting
(Loiseau et al., 2005) as well as reduce stress-induced rein-
statement of cocaine (Schank etal.,, 2014) and alcohol
(Schank et al., 2011; 2014) seeking. Interestingly, however,
antagonism at this receptor had no effect on cocaine
(Placenza et al., 2006) or alcohol reinforcement (Schank et al.,
2014). Neuropeptide Y, via an action at Y, receptors, has been
reported to regulate impulsivity. Thus, Y, receptor knock-out
mice were found to show increased impulsivity on the
5-CSRTT compared with wild-type littermates (Greco and
Carli, 2006). To date, however, no studies have specifically
investigated the effect of pharmacological manipulation of
this system on measures of impulsivity in rodents. However,
antagonism at Y, receptors has been shown to reduce
responding for alcohol (Thorsell et al., 2002; Rimondini et al.,
2005) although there are conflicting reports regarding this
effect (Cippitelli ef al., 2011). Despite evidence for a role of
corticotrophin releasing factor (CRF) signalling in addiction-
related behaviours (reviewed in Logrip ef al., 2011) there is no
evidence to suggest that CRF regulates impulsivity (Ohmura
et al., 2009).

Several other neurotransmitter systems that putatively
interact with corticostriatal neurotransmission have also
been implicated in both impulsivity and addiction. In this
context, histamine H; receptors have been shown to form
functional hetrodimers with both D, and D, receptors
(reviewed in Ellenbroek and Ghiabi, 2014). Antagonism
at histamine Hj; receptors has been reported to reduce
premature responding on the 5-CSRTT (Day etal., 2007)
and alcohol self-administration (Lintunen etal., 2001;
Nuutinen et al., 2011), but enhance methamphetamine self-
administration (Munzar et al., 2004). Similarly, adenosine A,
receptors form heteromeric complexes within the striatum to
affect neurotransmission in this region (e.g. Ciruela et al.,
2006). Activation of this receptor subtype has been shown to
reduce impulsive responding as measured on the DRL task
(Marek, 2012). Additionally, activation of this receptor inhib-
its dopamine-induced relapse to cocaine-seeking (Hobson
et al., 2013), although its effects on other drug classes has yet
to be investigated.

Clinical implications

Our analysis has revealed several promising pharmacological
mechanisms that bisect impulsivity and addiction-related
behaviours. As drug use in impulsive individuals may repre-
sent a form of self-mediation (Khantzian, 1985) treating
co-morbid impulsive symptoms may help to curb continuing
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drug use in addicts. While no studies to date have specifically
investigated this hypothesis insights can perhaps be drawn
from studies in ADHD.

With this in mind, a recent prospective study in adoles-
cents diagnosed with ADHD and treated with methylpheni-
date found that rates of tobacco use were reduced when
compared with a historical sample of smoking rates in a
comparable, non-medicated population of individuals with
ADHD (Hammerness et al., 2013). However, a multi-site trial
of the effect of methylphenidate treatment on rates of absti-
nence in individuals with ADHD and co-morbid tobacco
dependence found no effect despite a reduction in ADHD
symptoms (Covey et al., 2011). These results plausibly suggest
that treating impulsivity, at least with stimulant-based medi-
cations, may delay the development of addiction rather than
remediating the active disease state once established. In
keeping with this interpretation, meta-analyses suggest that
stimulants protect against the development of later substance
use disorders in individuals with ADHD (Wilens et al., 2003),
and that onset of treatment strongly predicts clinical
outcome, with early initiation of treatment reducing the rate
of dependence (Dalsgaard et al., 2014). Clearly, much further
research is needed to investigate the generality of these find-
ings to all classes of abused drugs and whether NARIs (e.g.
atomoxetine and roboxetine) offer similar protection against
the development of addiction. In this regard, however, recent
studies have found limited evidence for the efficacy of these
drugs to enhance rates of abstinence in cocaine-dependent
individuals with (Levin etal., 2009) and without ADHD
(Szerman et al., 2005; Walsh et al., 2013).

In light of enhanced rates of addiction, even in medicated
ADHD patients (Hammerness et al., 2013), there is naturally
some concern whether exposing children and young adults
to stimulant-based medications for ADHD might speed the
development of later addiction. Preclinical studies have gen-
erally found that chronic pre-exposure to stimulant drugs
increase subsequent levels of drug self-administration, at least
in animals showing increased basal levels of impulsivity [i.e.
spontaneous hypertensive rats, (Harvey etal., 2011;
Somkuwar et al., 2013), but see Martelle ef al. (2013); Gill
et al. (2012); Thanos et al. (2007)]. However, more research is
needed to understand the precise relationship between pre-
and post-drug levels of impulsivity and whether in young
animals stimulant exposure facilitates the development of
compulsive drug self-administration, as previously described
and modelled in rats (Vanderschuren and Everitt, 2004; Belin
et al., 2008; Pelloux et al., 2012). In this regard, the reported
action of atomoxetine to arrest the emergence of at least one
form of compulsive behaviour in naturally impulsive rats
(Ansquer et al., 2014) strongly encourages further research in
this area.

Conclusions

A review of the current literature highlights a number of
convergent pharmacological mechanisms, which putatively
mediate the reported link between impulsivity and addiction
(see Table 7 for a summary). Interestingly, the available
evidence suggests that while drugs capable of reducing
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impulsive action often also decrease measures of addiction-
related behaviours there is little convergence and often
opposing effects with impulsive choice. The close alignment
of pharmacological mechanisms in impulsive action and
various animal addiction models suggests that they may tap
into a common underlying process. Speculatively, this may
involve modulatory effects on the invigoration of behaviour
affecting the output of responses conditioned to food (impul-
sivity tasks) and drug (addiction tasks) rewards. This notion
might then suggest a common involvement of mesolimbic
dopamine projections, for example, to the ventral striatum,
including the NAc, which are widely implicated in impulsiv-
ity (Basar et al., 2010; Dalley et al., 2011) and drug reinforce-
ment (Willuhn et al., 2010). Such interactions could operate
at several levels including an enhancement or attenuation of
appetitive approach behaviour to primary as well as condi-
tioned reinforcing stimuli (Everitt and Robbins, 2005). Thus,
the mesoaccumbens dopamine system may form the final
common pathway through which other transmitter systems
(for example those illustrated in Table 7) operate to modulate
action impulsivity and certain drug-motivated behaviours
(for reviews, see Feltenstein and See, 2013; Schmidt and
Weinshenker, 2014). Conceivably, this mechanism may
encompass dopamine-mediated gating of cortico-accumbens
projections from the PFC, amygdala, and hippocampus (Goto
and Grace, 2008), and thereby the expression of drug craving
and relapse (Kalivas and Volkow, 2011). Interestingly, while
our analysis has revealed a close relationship between
motoric forms of impulsivity and addiction-related behav-
iours, there is little evidence for a similar association with
impulsive choice, with the exception of nicotinic a4p2 recep-
tor antagonists, which decrease both action- and choice-
related forms of impulsivity and drug-seeking responses. The
apparently weak association between choice impulsivity and

Table 7

addiction-related behaviours suggest they may involve dis-
tinct pharmacological substrates. Nevertheless, there is some
evidence that NARIs may be efficacious in several forms
of impulsivity, including delay-discounting impulsivity;
however, larger-scale prospective studies are needed to inves-
tigate whether early intervention in ADHD (e.g. with NARIs)
significantly moderates the risk of addiction in adulthood.
Finally, research is needed to explore emerging neurotrans-
mitter substrates and mechanisms (e.g. GABA, glutamate,
cannabinoids and ACh) as a strategy to develop more effec-
tive therapies in addiction and impulsivity disorders.
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Pharmacological interventions that reduce both impulsivity and addiction-like behaviour in rodent models

Neurotransmitter system

Dopaminergic D; antagonist

5-hydroxytryptaminergic SSRI

Impulsive action

Impulsive choice

5-HT,a antagonist*
5-HTa/c antagonist
5-HT,c agonist
5-HT 2g/c agonist
5-HT; antagonist

Adrenergic NARI
NSRI*
o4 antagonist
B antagonist
Glutamate mGlu; antagonist

Cannabinoid CB, antagonist

Cholinergic Nicotinic 042 antagonist Nicotinic 042 antagonist

*Evidence to suggest effect in relapse-like behaviour, but not self-administration, despite the apparent relationship of both to impulsivity.
NSRI, noradrenaline 5-HT re-uptake inhibitor; SSRI, selective 5-HT re-uptake inhibitor.
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